Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.

نویسندگان

  • J Q Huang
  • J M Trasler
  • S Igdoura
  • J Michaud
  • N Hanal
  • R A Gravel
چکیده

Tay-Sachs and Sandhoff diseases are autosomal recessive neurodegenerative diseases resulting from the inability to catabolize GM2 ganglioside by beta-hexosaminidase A (Hex A) due to mutations of the alpha subunit (Tay-Sachs disease) or beta subunit (Sandhoff disease) of Hex A. Hex B (beta beta homodimer) is also defective in Sandhoff disease. We previously developed mouse models of both diseases and showed that Hexa-/- (Tay-Sachs) mice remain asymptomatic to at least 1 year of age while Hexb-/- (Sandhoff) mice succumb to a profound neurodegenerative disease by 4-6 months of age. Here we find that neuron death in Hexb-/- mice is associated with apoptosis occurring throughout the CNS, while Hexa-/- mice were minimally involved at the same age. Studies of autopsy samples of brain and spinal cord from human Tay-Sachs and Sandhoff diseases revealed apoptosis in both instances, in keeping with the severe expression of both diseases. We suggest that neuron death is caused by unscheduled apoptosis, implicating accumulated GM2 ganglioside or a derivative in triggering of the apoptotic cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Animal models of GM2 gangliosidosis: utility and limitations

GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM...

متن کامل

Characterization of Inducible Models of Tay-Sachs and Related Disease

Tay-Sachs and Sandhoff diseases are lethal inborn errors of acid β-N-acetylhexosaminidase activity, characterized by lysosomal storage of GM2 ganglioside and related glycoconjugates in the nervous system. The molecular events that lead to irreversible neuronal injury accompanied by gliosis are unknown; but gene transfer, when undertaken before neurological signs are manifest, effectively rescue...

متن کامل

Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis.

Mouse models of the GM2 gangliosidoses [Tay-Sachs, late onset Tay-Sachs (LOTS), Sandhoff] and GM1 gangliosidosis have been studied to determine whether there is a common neuro-inflammatory component to these disorders. During the disease course, we have: (i) examined the expression of a number of inflammatory markers in the CNS, including MHC class II, CD68, CD11b (CR3), 7/4, F4/80, nitrotyrosi...

متن کامل

GM2 gangliosidosis AB variant: novel mutation from India – a case report with a review

BACKGROUND GM2 gangliosidosis-AB variants a rare autosomal recessive neurodegenerative disorder occurring due to deficiency of GM2 activator protein resulting from the mutation in GM2A gene. Only seven mutations in nine cases have been reported from different population except India. CASE PRESENTATION Present case is a one year old male born to 3rd degree consanguineous Indian parents from Ma...

متن کامل

Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment.

The GM2 activator deficiency (also known as the AB variant), Tay-Sachs disease, and Sandhoff disease are the major forms of the GM2 gangliosidoses, disorders caused by defective degradation of GM2 ganglioside. Tay-Sachs and Sandhoff diseases are caused by mutations in the genes (HEXA and HEXB) encoding the subunits of beta-hexosaminidase A. The GM2 activator deficiency is caused by mutations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 1997